The Apple Context

- Apples are produced in most provinces
 - Concentration in ON, QC, BC, NS and NB
 - Largest tree fruit crop - volume and value
 - 2nd most valuable fruit crop after blueberries

- The market is variety-driven
 - Variety used up to 100 years, but now reduced
 - Domestic market share decreasing over the last decade

- Key innovations to regain our domestic share*
 - Innovativeness
 - Introduction of new varieties

*Horticulture Value Chain Roundtable Benchmarking Study for Canadian Apples, 2012
Genetic Improvement...

...the beginning of the Value Chain Model
AAFC’s Research Centres Supporting Apple Horticulture

Coastal Region
Prairie Region
Ontario-Quebec Region
Current Apple Breeding Work...

Stage 1

- Cross between two parents
- Screening for disease resistance (e.g. scab) + 3 years juvenile seedling growth
- Budding + 3 years select for disease resistance (e.g. powdery mildew) and post-harvest traits

Years 8-14: 2nd Selection in Replicated Trial

- Budding + 3 years of juvenile growth
- Deblossom to prevent stunting
- 3 years of selection for yield and quality traits

Stage 2

Years 15-20: On-Farm Testing (SVC)

- Budding + 3 years of juvenile growth
- 2+ year evaluation for regional climate adaptation, yield and quality

Stage 3

- AAFC generates final varieties
 - Focused on quality and yield
 - Little germplasm development and new breeding technologies
- Provinces/grower organizations, arms-length organizations in some places test regional adaptability
- Universities are not typically involved
- Nurseries sell trees and pay royalties
The Challenge

• AAFC is a national, publicly funded entity;

• In all our sector strategies we consider:
 • Productivity +
 • Environmental sustainability +
 • Attributes +
 • Threats to the value chain;

• It is important that we:
 • Ensure results of a national program reach all regions where the crop is significant
 • Reflect an emphasis on the “public good” (e.g. sustainability, adaptation to climate change)
 • Work collaboratively and appropriately distribute risks between the public and private sectors
The four phases along the breeding continuum

<table>
<thead>
<tr>
<th>Phases</th>
<th>Steps in breeding continuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Precursors to breeding</td>
<td>Training in plant breeding
Germplasm Collections and Maintenance</td>
</tr>
<tr>
<td>2. Genetic research</td>
<td>Dev. of new knowledge and enabling tools for crop improvement (genomics, inheritance, genotyping, phenotyping, DH etc.)</td>
</tr>
<tr>
<td>3. Germplasm development</td>
<td>Identification and characterisation of new traits
Germplasm enhancement for new traits, development of early generation material (pre-breed)</td>
</tr>
<tr>
<td>4. Cultivar development</td>
<td>Finishing cultivars and evaluation trials for adaptation
Licensing and release of genetic material
Commercialization, distribution of cultivars, and adoption</td>
</tr>
</tbody>
</table>
Who are the key players along the value chain breeding continuum?

- **Genetic research & germplasm development**
- **AAFC**
 - Collection of germplasm
- **Universities**
 - Education of HQP
- **Private breeders**
 - Enhanced germplasm to include in Elite cultivars
- **Seed distributors & nurseries**
 - Improved cultivars
- **Farmers**
 - Reduced fertilizers and pesticides
 - Adaptation to climate change
 - Emerging crops
- **Food processors**
 - Improved processing quality
 - Attributes and safety
- **End-users**
 - Commodity/Partnership levy
 - Research priorities
 - Public good & knowledge
 - Accelerated adoption
- **Consumers**
 - Improved food security and quality
 - Local food, reduced imports
An apple research and innovation capacity map

<table>
<thead>
<tr>
<th>Performer</th>
<th>BC</th>
<th>Prairies</th>
<th>ON</th>
<th>QC</th>
<th>Maritimes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAFC</td>
<td>Summerland - Breeding</td>
<td></td>
<td>Harrow - Canadian Clonal Genebank</td>
<td></td>
<td>Kentville</td>
</tr>
<tr>
<td>Germplasm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development and Genomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provinces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Sector</td>
<td></td>
<td></td>
<td>VRIC - start breeding and applied genomics</td>
<td>Les pommes de demain</td>
<td></td>
</tr>
<tr>
<td>Variety Evaluation & Finishing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kentville</td>
</tr>
<tr>
<td>Universities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provinces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Sector</td>
<td>SVC licencing</td>
<td></td>
<td>VRIC - scouting of new varieties</td>
<td>RECUPOM</td>
<td>NS Fruit Grower’s Association</td>
</tr>
<tr>
<td>Production Protection & Post-Harvest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universities</td>
<td>U. of BC: Biocontrol for postharvest diseases</td>
<td></td>
<td>Guelph</td>
<td>Western U.: IPM&genomics</td>
<td></td>
</tr>
<tr>
<td>Provinces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Sector</td>
<td></td>
<td></td>
<td>OMAF/MRA: post-harvest, Invasive pest (BMSB)</td>
<td>IRDA: DT in IPM</td>
<td>Advisory clubs, CRAAQ: extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A National Apple Innovation System

Area of work

<table>
<thead>
<tr>
<th>Innovation continuum</th>
<th>Research</th>
<th>Development</th>
<th>Technology transfer</th>
<th>Extension</th>
<th>Commercialisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germplasm Development and Genetics</td>
<td>AAFC Harrow: Canadian Clonal Genebank; AAFC Kentville: Apple Biodiversity Collection; AAFC Summerland: breeding</td>
<td>Dalhousie U.: Apple Genomics</td>
<td>SVC (BC): licensing; RECPOM (QC), OAG/VRIC (ON), NSFGA/SG (NS)</td>
<td>Provinces: CHC (BCFGA, OAG, FPPQ, NSFGA etc.), advisory clubs, Annual meetings, field demonstrations etc.</td>
<td>Industry stakeholders</td>
</tr>
<tr>
<td>Variety Evaluation and Finishing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colour Legend
- National public
- Regional public
- Sector organisations
Some inspiring models

• An international consortium (2011-2015) EU-funded
 • 24 participants (4 outside EU)
 • To bridge the gap between genomics and fruit breeding

http://www.fruitbreedomics.com/
a USDA-SCRI awarded project
- RosBREED (2009-2014) $14M
- RosBREED2 (2014-2019) $10M
- A national team of 35 scientists

14 U.S. universities and agencies
- Combining Disease Resistance with Horticultural Quality delivering new CVs in 22 U.S. breeding programs

Crop	Common Name
apples | apple scab, fire blight, and blue mold
pears | fire blight
peaches | brown rot, bacterial spot, and Armillaria root rot
sweet cherries | powdery mildew
tart cherries | cherry leaf spot
strawberries | angular leaf spot and root and crown rots
roses | black spot

National Apple Breeding Framework

Monday 29 February 2016
OUR BUSINESS

- Budwood Orchard
- Variety Rights Management
- Variety Development
 - Grower Testing
 - Commercialization
- Extension Services
- Research and Development
A Vineland Approach

Consumers matter

- Sensory analysis
- Consumer likes-dislikes
- Stakeholders

Apple Breeding

- Parent selection
- DNA markers
- Quality
- Performance
- Disease Resistance

On-farm testing
- Business model
- Marketing
- Consumer testing

Cultivar release

Consumer Preference
• Mission – Sean Myles
 – To develop genomics tools to accelerate food improvement
 – To gain fundamental insights into plant biology

• Nature of work
 – Genetic mapping
 – DNA sequencing and analysis
 – High-throughput phenotyping
An integrated apple breeding program

- A single program
- Stage 1 at 2 sites (Summerland, VRIC)
 - Complete sharing of genetic material
- SVC as agent of commercialization
- Pre-breeding work depending on trait
 - e.g. powdery mildew in Summerland, apple scab at VRIC
- Genomic, genome editing work at Dalhousie U./VRIC
- Stage 2 in multiple sites (how many? for GxE)
 - Site with technical expertise and method standardization
 - e.g. RECUPOM, Kentville
- IP framework is required
- Need to be endorsed and transparent to growers associations
- Goal is international in scope for sustainability
Funding models

• AAFC: A-base (Vote 1), GF3 (Vote 1/10), Genomic RD Initiative (Vote 1-interdepartmental)

• Universities: NSERC, research Chairs, CFI (Canada Foundation Innovation), Genome Canada (Vote 10)

• Genome Canada: GAPP (Genomic Application Partnership Program), GIN (Genomic Innovation Network), regional genome center programs

• Industry stakeholders*: provincial sources, cash, commercialization revenues, levy/check-off, Industrial Research Assistance Program (IRAP)

• Coordinated funding strategy

* Producers associations, food processors, SVC, VRIC, marketers, retailers, nurseries (possibility to have a consortium ?)
Thank you!

For more information contact:

Christiane.Deslauriers@AGR.GC.CA, DG Champion - Horticulture
Benoit.Girard@AGR.GC.CA, Science Strategy Lead - Fruits
Sylvie.Jenni@AGR.GC.CA, Science Partnerships Division- Horticulture